
Is the Zamolodchikov model critical?

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1985 J. Phys. A: Math. Gen. 18 1483

(http://iopscience.iop.org/0305-4470/18/9/028)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 09:54

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/18/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 18 (1985) 1483-1497. Printed in Great Britain 

Is the Zamolodchikov model critical? 

R J Baxter and P J Forrester 
Department of Theoretical Physics, Research School of Physical Sciences, The Australian 
National University, Canberra, Australia 2601 
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Abstract. Evidence is presented in favour of the hypothesis that the Zamolodchikov model 
(an exactly solvable three-dimensional lattice model without any temperature-like para- 
meters) is critical. The evidence is obtained by generalising the Zamolodchikov model to 
include a temperature-like variable. The magnetisation curve of this model is then studied 
using a modified form of a variational approximation formulated earlier. Also we show 
the two-layer Zamolodchikov model corresponds to a critical free-fermion model. 

1. Introduction 

The Zamolodchikov model (Zamolodchikov 198 1)  is unique amongst three- 
dimensional lattice models in statistical mechanics for two reasons. First, as conjectured 
by Zamolodchikov (1981) and subsequently proved by Baxter (1983), the model permits 
a solution of the tetrahedron equations. These are a set of 214 equations sufficient for 
the plane-to-plane transfer matrices to commute. Secondly, as recently shown by 
Baxter (1984), the free energy of the model can be calculated exactly. 

The Zamolodchikov model does not have any temperature-like parameters. In 
two-dimensional lattice statistics there is a class of models which are exactly solvable 
but only at a special temperature-the q-state Potts model at criticality (Baxter 1982). 
This immediately raises the question of whether the Zamolodchikov model is critical. 
In this paper we investigate that question. 

To do this we define a generalised Zamolodchikov model. This model has a 
temperature-like parameter U ,  the original Zamolodchikov model corresponding to a 
special value U = U, .  By adapting a variational approximation for three-dimensional 
lattice models formulated earlier (Baxter and Forrester 1984) we obtain numerical 
results for this generalised model. In particular we calculate the magnetisation. 
Although our results are not conclusive they are consistent with the hypothesis that 
the model is critical at U = U = .  

Further evidence in support of this hypothesis is obtained by studying the two-layer 
Zamolodchikov model. We show it corresponds to a critical free-fermion model. 

2. A variational approximation for the generalised Zamolodchikov model 

2.1. The generalised Zamolodchikov model and an equivalent formulation 

Let 2 be the simple cubic lattice. With each site i associate a spin ui, with values + 1  
or -1 (+ or -). Allow interactions between the eight spins round each elementary 
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cube. The Zamolodchikov model has been formulated as such an ‘interaction-round-a- 
cube’ model by Baxter (1983), table 1. The weight function is invariant under both 
reflection and rotation (i.e. it is isotropic) when the spherical angles a, equal :T, i = 1, 
2, 3, 4. Explicitly, in the notation of Baxter (1983) the model is isotropic when the 
parameters assume the values 

Po= 1, Qo= U* 

P . = Q  I I  = U  i =  1,2,3 (2.1) 

Ri = (U + u ~ ) ” ~  i = o ,  I ,  2, 3 

where 
- 

U = t a n ( ~ / 8 )  = J 2 -  1. 

We can construct a sub-lattice Lfs of 2’ consisting of a particular site and all other 
sites that can be visited from it by walking along body diagonals of 2’. Then zs 
contains one-quarter of the sites of Y and is in fact a BCC lattice where the unit cell 
consists of eight cubes of Lf (see figure 1). 

Figure 1. The four types of cubes I ,  2, 3, 4 obtained by negating the spins on the sites 
indicated by dots. The corresponding weight functions are W , ,  W,, W,, W, respectively. 
The lattice formed by the dotted sites is a BCC. 

We generalise the Zamolodchikov model by considering U in (2.1) as a variable: 

O < u < l .  (2.3) 

Then U is a temperature-like variable. For U = 0 a dominant ground state is one in 
which the spins on Lfs are down, the rest are up. 

In Baxter and Forrester ( 1984) we formulated a variational approximation appli- 
cable to isotropic three-dimensional cubic lattice models which have a translation 
invariant ground state. Thus we cannot directly apply the variational principle to the 
generalised Zamolodchikov model. However the ground state can be made translation 
invariant by the following transformation. 

Suppose we negate the spins on TS. We then have a partition function of the four 
types of cubes and weight functions indicated in figure 1. Using the notation for the 
location of spins on a cube given in figure 2 these weight functions are specified by 
table 1 .  
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e d 

Figure 2. Labelling of the faces of a cube and positions of the spins in the weight 
W ( a  I efglbcd I 1. 

Table 1. Weight functions for the four types of cubes indicated in figure 1. Here we have 
used the notation A = abeh, CL = acfh, v = adgh, L = U (  1 - abcd)  

1 + abcdu' 
(u+u3)1 /2  
( U  + u3)'/2 
( U +  u3)'/2 

-abL 
- acL 
-adL  

(u+u3)1/2 

1 + abcdu2 
( U  + U 3 ) ' / *  

( U  + u3)'/2 
(u+u3)1/2 

-abL 
acL 
adL 
( U  + u3)1'2 

I + abcdu2 
( U  + u3)1'2 
( U + U 3 ) 1 / 2  

(u+u3)1/2 
abL 

-acL 
adL 
( U  + u3)1/2 

1 + abcdu2 
( U  + u3)'/2 
( U + U 3 ) 1 / 2  

( U + U 3 ) 1 / 2  

abL 
acL 

- adL 
( u + u 3 ) l / 2  

We define the sign factor 

1 if a = b = - 1  
(a ;b)={- l  otherwise (2.4) 

which has the factorisation property 

( a b ;  c d )  = ( a ;  c ) ( a ;  d ) ( b ;  c ) ( b ;  d ) .  (2 .5 )  

Then from table 1 (with A, p, v defined therein) we can check the relations 

W, = ( A  ; p v )  WI, w3 = ( P ,  w,, W,=(v,ACL)W,. (2 .6)  

Using the factorisation property (2.5) we can check that for each cube j = 2, 3, 4 

product of sign factors for each face of the 
cube not bordering a type- 1 cube 

wj = w, x (2.7) 
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The sign factor of a face with spins ul ,  u2, u3, u4 ordered anti-clockwise as in figure 
3 and with the type-1 cube bordering the edges with spins (U,, u2) and (u3, u4) is given 

Figure 3. Ordering of the spins U,, u2, v3, u4 around a face. This same ordering is used 
for the arguments of the functions F(a,, U>, uj, u4). 

Thus all sign factors are on faces of cubes not bordering a type-1 cube. Multiplying 

(2.9) 

out the sign factors on any one such face, we find the total sign factor is 

( g , :  u2)(u2; ( + 3 ) ( ( + 3 ;  u 4 ) ( u 4 ;  a,) 

which is a product of sign factors of each edge of the face. However, every edge of 
the lattice borders one cube of each type. Thus for each edge (with spins a, b say) 
there are two faces containing that edge not bordering a type-1 cube. Hence the sign 
factors for each edge occur in pairs and do not contribute to the partition function since 

( a ;  b)’= 1 .  (2.10) 

The partition function is therefore unchanged if we assign the weight function W ,  
to all cubes of 2’. The model with this weight function has as ground state the state 
with all spins up, which is of course translation invariant. 

2.2. A variational approximation for anisotropic models with a translation invariant 
ground state 

The price we pay for using the weight function W ,  is to no longer have an isotropic 
weight function. Thus, for example, W ,  is not unchanged by plane reversal but rather 
for some configurations there is a change in sign (the Zamolodchikov model is not 
physical in the sense that there are negative Boltzmann weights). Therefore again we 
cannot directly use the variational approximation. However, by interpreting the vari- 
ational expression-for K graphically, we can write down a variational approximation 
for anisotropic models. 
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We recall from Baxter and Forrester (1984) the variational quantities A, E and F 
can be interpreted as corner, edge and face weights respectively. In a variational 
approximation for anisotropic models A, B and F will depend on the particular corner, 
edge and face of the central cube. Let us label the faces of a cube front (f) ,  back (b), 
left ( I ) ,  right (r) ,  top (t)  and bottom (g, for ‘ground’). Then the particular A’s, B’s 
and F’s can be distinguished using these labels as subscripts. We require three such 
labels for A, two for B and one for F. 

This distinguishes directions and orientations in the quantities s, which constitute 
the variational approximation for K (equation 3.18 of Baxter and Forrester 1984). 
There are now three different expressions for s2 (szl ,  sZ2, ~ 2 3  say) and three different 
expressions for s3(sJI, ~ 3 2 ,  sj3). When represented graphically sZ1, sZ2 and ~ 2 3  only differ 
by orientations and similarly ~ 3 1 ,  ~ 3 2 ,  s33 (thus in the isotropic case sZ1 = s22 = ~ 2 3 ,  

s3l = ~ 3 2  = s33). The variational expression for K in the anisotropic case is 

(2.11) = s4s2L s22s23/ (s3 I s32s33sI ). 

In figure 4 we represent s4, ~ 3 1 ,  s21 and s1 graphically. We adopt the convention 
that the spins on dotted sites are to be summed over while sites with circles have the 
spins thereon as variables. The graphs are highly abbreviated. In the graph for s4, 
with every corner, edge and face there is associated an A, B and F respectively, with 
the appropriate position subscripts. The graph for sj l  contains two corner, edge and 
face variational weights, for each corner, edge and face of the graph; one will always 
have a subscript b for bottom, the other t for top. The graph for s21 contains four 
corner and edge weights for each corner and edge (the corners in this graph being 
defined as the ends of the edge), and the graph for sI contains the eight corner weights 
A. The graphs for sZ2 and ~ 2 3  are obtained from that for s21 by orientating the graph 
(which is along the Y axis) along the X and Z axis respectively. The graphs for s32 
and s33 are obtained from that for ~ 3 1  by orientating the graph (which is in the X Y  
plane) in the X Z  and YZ planes respectively. 

Similarly the three sets of variational equations determining the A’s, B’s and F’s 
given in Baxter and Forrester (1984) (3.23)-(3.25) can be represented graphically. A 
typical graph of each of the three sets of variational equations is given in figure 5 (in 

Figure 4. Graphical representation of s4, sj, ,  s2, and s,. See the text for explanations of 
these graphs. 
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Figure 5. Graphical representation of the three types of variational equations. See the text 
for further explanation. 

fact the type-(a) graph of figure 5 corresponds to (3.23) after cancellation of common 
factors on both sides of that equation). Again we are using an abbreviated notation. 
The number of variational quantities associated with each graph is the same as in 
figure 4 except that all variational quantities involving the top  subscript t are not 
present. Due to the anisotropy there are 6 X 16 distinct equations of type-(a), 12 X 4  
of type-(b) and  6 x 2  of type-(c) (the multiplicity coming from the allowed values of 
the arguments of F, B and A respectively), which can be obtained from those given 
in figure 5 by rotations. 

Note that in general we have 8 x 2 + 12 x 4 + 6 x 16 variables so it appears we have 
less equations than unknowns. However, it is readily seen from the equation in figure 
5(b)  and the three equations it generates by rotations of 90” in the X Z  plane that the 
quantities B occur in the combinations 

BftBbt, BftB,, Bfg Bbg, BbgBbt* (2.12) 

A knowledge of any three of the above determines the fourth, so in this block of four 
B’s one is redundant. The same considerations apply to the set of B’s 

(2.13) 

Btl , Bfr, Bbl, Bbr (2.14) 

so out of the original twelve B’s only nine are distinct. Similarly the A’s only occur 
in the combinations 

AbrtAbrgi AbrtAbitr AbltAbig, AblgAbrg (2.15) 

and 

AfrtAfrg, Afrt Ant, AntAng, (2.16) 

Out of the four variables given by (2.15) only three are distinct and similarly the four 
variables given by (2.16). Thus only six of the original eight A’s are distinct. Hence 
we have in fact more equations than unknowns. 
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2.3. General first-order solutions of the variational equations 

Firstly let us define a normalised weight function W, by 

Wl = w,/ W,(+l+++l+++l+) (2.17) 

and suppose that the equation in figure 5 ( a )  is written in terms of W,. When the 
system is in its ground state of all spins up the solution of the above specified variational 
equations is, for each i, j = 1,2,3 

S , / S ~ , = S ~ I / S Z , = S ~ , / S I =  1, (2.18) 

for each of the eight A’s 

A ( a , )  = s(a,, +), (2.19) 

(2.20) 

and for each of the six F’s 

F ( a ~ ,  uj, (+k, VI )  = a((+,, +)S(ujj, +)a(uk,  +)6((+1, + ) e  (2.21) 

Here 6 denotes the Kronecker delta. 
We know from our study of the variational equations in the isotropic case that in 

the low-temperature limit the term with the spins in the summation on the LHS all 
equal to +1 dominates and is equal in magnitude to the RHS.  To see that this is true 
in general divide each term on the LHS by the RHS, and cancel out common factors. 
If we then substitute the ground state values (2.18)-(2.21) all terms are zero except 
that with all spins in the summation of the LHS equal to + 1, which is not well defined 
(we have O/O). As a first-order approximation to the variational equations we equate 
this term for each equation to unity. 

We seek a solution to these first-order equations. Again we know from the isotropic 
case a solution can be obtained by considering the blocks of spins corresponding to 
the A’s, B’s and F’s now as single cubes of spins, fixed to the appropriate position 
around a central cube. The spins on the outside (i.e. not bordering the central cube) 
are fixed at +1, and the spins bordering the central cube are variables. By assigning 
these single cubes or spins their weight function W,, we obtain a solution of the 
first-order variational equations. This is again a solution of the first-order equations 
in the anisotropic case, a fact which is readily seen by examining the graphical 
interpretation of these equations. 

For example we have to first order 

Afrg( - ) = WI (+I + + - I + + + I+), B,(+ ,  -) = W1(+l-++/+-+l+) (2.22) 

FJ- ,  +, -, +) = W,(+l-++I+++l-). 
Note that in the ordering of the arguments of the F’s we adopt the convention of 
figure 3. 

2.4. Ansatz for the reduction of the number of independent variables 

The results of § §  2.2 and 2.3 are applicable to any anisotropic cubic lattice model with 
a translation invariant ground state. However, due to the large number of independent 
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variables the general formalism is of no practical use. We thus seek a procedure to 
reduce the number of independent variables to a manageable level. 

If W, were isotropic we could use the obvious symmetries of the A’s, B’s and F’s 
to reduce the number of distinct equations and unknowns to 11, regaining the equations 
of Baxter and Forrester (1984). In fact W ,  is ‘almost isotropic’ in the sense that spatial 
rotations and reflections leave unchanged the magnitudes of the values of W,,  but may 
change their sign. We may hope that these symmetries and anti-symmetries are reflected 
in our variational equations. We find that indeed they are, and that we can reduce 
the number of equations to eleven, but we do have to be careful to obtain the correct 
signs. 

The ansatz we use is as follows. If the variational quantities (in particular the 
blocks of spins corresponding to the variational quantities) differ only by orientation, 
and if the corresponding first-order solutions differ by at most a sign, then these 
quantities are equated (with the appropriate sign). For example we have 

(2.23) 

(2.24) 

F,(+, +, -, -) = W,(+/+++l+-+l - )  = -2u/( l + d )  

F,(-,  +, +, -)= W,(+/ -++ \+-+J+)=2u/ ( l+u2)  

so we substitute 

Ft(+,  +, -, -) = - F t ( - ,  +, +, -1 (2.25) 

in the variational equations. 
We thus find for any orientation 

A = B = F = I  (2.26) 

when all the arguments are + (this is a normalisation). Also each of 

is independent of orientation. The quantities 

w-, -1 and F(+,  +, -, -) (2.28) 

are dependent on orientation. The sign of these quantities is dependent on location 
of the - spins on the relvant edge and face. If B(- ,  -) is the variational quantity 
associated with an edge containing the spins a or h (recall figure 2) then we have 

(2.29) B( -, -) = B’. 

Otherwise 

B ( - ,  - )=-B’ .  (2.30) 

Similarly if F ( + ,  +, -, -) (or any F obtained from this F by rotation) is the variational 
quantity associated with a face of the central cube containing the spins a or h and if 
a or h (respectively) are - then 

(2.31) F(+,  +, -, -) = F ‘ .  

Otherwise 

F ( + ,  +, -, -) = - F’. (2.32) 

However our first-order rule gives 

F ( + ,  -, +, -) = O  (2.33) 
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for each of the six F’s and those F’s obtained from them by rotations. Thus these 
quantities are of the same magnitude but their signs are undetermined. To determine 
the signs it is necessary to solve the appropriate variational equation (figure 5 ( a ) )  to 
next order. This is done by equating the RHS to the next dominant term(s) on the LHS 

in the low-temperature limit (which are the terms with all but one spin + 1  in the 
summation). F(+,  -, +, -) is considered as the unknown, which is determined by 
substituting the first-order values of the other terms. We thus find to second order 

F(+,  -, +, -) = E x2W3(+1++-)-++(+) W’(+(-++)+++l+) 
= E x 16u4/( 1 + ~ ’ ) ~ ,  (2.34) 

where the sign factor E is specified in the same way as the sign of F ( + ,  +, -, -). Thus 
if F(+,  -, +, -) is the variational quantity associated with a face of the central cube 
containing the spins a or h and if a or h (respectively) are -1 then E = 1. Otherwise 
E = -1. The same is true for any F obtained from F ( + ,  -, +, -) by rotation. 

Substitution of these relationships between the variational variables shows 

Sjl = s 3 2  = s 3 3  = s, (2.35) 

and 

There are thus eleven unknowns (we take A ( + )  = B ( + )  = F ( + ,  +, +, +) = 1 as normali- 
sations and s4/s3, ~ 3 / ~ 2 ,  s2/sI are variables) just as in the isotropic case. 

It remains to check that there are exactly eleven independent variational equations 
(which are, apart from signs, the same as in the isotropic case). This is equivalent to 
requiring each term in the expression for s4 to be isotropic. By this we mean each 
configuration that is related to another by a rotation or reflection, when weighted by 
the variational quantities as in the definition of s4, must be equal. We readily verify this. 

In fact the equations reduce to those of an isotropic translation invariant model, 
(3.18)-(3.25) of Baxter and Forrester (1984), with W therein replaced by 1 Wll, except 
for certain weights which occur with a negative sign. These exceptional weights are 
those corresponding to the spin configurations shown in figure 6 and to any configur- 
ation obtainable therefrom by spatial reflection and/or rotation. Because of these 
negative signs, we lose the original spin-negation symmetries of the Zamolodchikov 
model. 

G, :-1 

Figure 6. Spin configurations that have negative weight in the final eleven-equation 
variational approximation. There are 8 configurations that can be obtained from the first 
by spatial reflection and/or rotation; 24 from the second and two from the third: all these 
have negative weight. 
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2.5. Series and numerical results 

The variational equations can be solved both numerically and in series form using the 
procedure outlined in Baxter and Forrester (1984), where we obtained such results for 
the Ising models. If K is the partition function per site of the generalised Zamolodchikov 
model (with weight function W , )  we obtain 

K / (  1 + U’) = 1 + U4-4U6+4U7+45U8-36U9 

- 80 U l o  + 444 U I - 43 5 U ’ * - 1 888 U I + 1 3460 U 1 4 .  

Also, the spontaneous magnetisation is given by 

M o = [ A 8 ( + )  - A 8 ( - ) ] / [ A 8 ( + ) + A 8 ( - ) ] ,  

and we find that 

(2.37) 

(2.38) 

MO= 1 -2u4+8u6- 1 6 ~ ’ -  158u8+ l h 9 -  1 7 6 ~ ~ ~ - 2 4 1 6 ” + 3 0 5 4 ~ ’  

+ 6 8 0 0 ~ ’ ~  - 1 0 3 2 8 8 ~ ’ ~ .  (2.39) 

For the sc, FCC and BCC Ising models we found that the variational approximation 
gave K and MO correctly to orders uI4, U’’, uZ3 respectively. Unfortunately we have 
no direct test of the accuracy of the approximation for the Zamolodchikov model, but 
it seems likely that the series (2.37) and (2.39) are correct to the order given. (Even 
if the last coefficients are in error, we should expect the error to be small.) 

2.6. Behaviour o f A ( - ) / A ( + )  

In (2.26) we have normalised so that A(+)  = 1, so A ( - )  is the same as the ratio 
A ( - ) / A ( + ) ,  which from (2.38) is related to the spontaneous magnetisation. We have 
plotted A ( - )  against U in figure 7. 

Figure 7. Graph of A ( - )  against U for the BCC king model (broken lines) and the 
generalised Zamolodchikov model (full line). The scale on the U axis is proportion_al to 
u ” ~ ,  although we have marked in the values of U. On the latter we have marked U = 42 - 1. 
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First consider the behaviour of A(-) for an Ising model: a typical graph is given 
in figure 7. As U increases A(-) increases until a certain critical value U, is reached 
(which occurs when A(- )=A(+)  = l ) ,  and then A(-) remains constant. In fact for 
the Ising models all the variational quantities increase monotonically until the critical 
value is reached, when they remain constant ('stick') for further increases in U. Further 
at criticality all variational quantities related by spin reversal are numerically equal, 
so for example 

F ( + , + , - , - ) = F ( - , - , + , + ) .  (2.40) 

The plot of A( -) against U for the generalised Zamolodchikov model is not identical 
in structure to that for the Ising models. In particular the value of A ( - )  at which 
A(-) remains constant is not A(-)  = 1.  This is because we have lost the spin-negation 
symmetry in making the variational approximation. It can be explained by the anti- 
symmetry relations built into the variational approximation (recall Q 2.4) where for 
certain faces of the cube we have for example 

F(+,  +, -, - ) = - F ( - ,  -, +, +). (2.41) 

At criticality we require the spin reversal symmetry (2.40) which thus implies 

F(+,  +, -, - ) = O .  (2.42) 

However, again the numerical values of the variational quantities are monotone, so it 
is not possible to obtain the usual solution of the variational equations at criticality, 
starting from the low-temperature solution and varying the solution continuously. 

Even so, figure 7 does show the characteristic 'sticking' of the value of A( -), which 
is indicative of a phase transition wifh vanishing spontaneous magnetisation (and the 
value of A(-) is then quite close to one). We are particularly interested in the value 
U = h- 1, when from (2.2) we regain the original isotropic Zamolodchikov model. 
From figure 7 it is at about this value that the 'sticking' of A(- )  occurs. Thus our 
numerical results are consistent with the expectation that the generalised model is 
critical at 

u c = J 2 -  1. (2.43) 

Guttmann ( 1984) has applied numerical series analysis techniques to (2.37) and 
(2.39). The results indicate a critical singularity between 0.3 and 0.4. Allowing for the 
shortness of the series, this is reasonably consistent with the conjecture (2.43). 

- 

2.7. Partition function per site 

Very recently, one of us (Baxter 1984) has exactly evaluated the partition function per 
site of the Zamolodchikov model. For the isotropic case considered here the result is 

K = 23'4(2'/2- 1) eZG/" = 1.2480. . . (2.44) 

where G = 0.91 5 965 . . . is Catalan's constant. This provides a good test of our numeri- 
cal approximation, which gives (for U = h- 1)  

(2.45) 

When one considers the simple nature of the variational approximation, and the fact 
that it is a severe test to apply it at a critical point, this is really very good agreement. 

K = 1.2333.. . . 
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3. The two-layer case 

Le us go back to the Zamolodchikov model as defined in table 1 of Baxter (1983), 
and for the moment regard the Pi, Qi, Ri therein as adjustable parameters. This model 
is more general even than that discussed in 0 2 (it reduces to that of 0 2 when (2.1) is 
satisfied). Here we shall show that for a simple cubic lattice 2 of only two layers with 
cyclic boundary conditions, the general model is equivalent to a planar square-lattice 
eight-vertex model in a field. Further, when Pi, Qi, Ri take the Zamolodchikov model 
values, the eight-vertex model reduces to a critical free-fermion model. 

We consider two cubes of 2, one above the other and think of them as a ‘pillar’. 
As 2’ is only two layers thick and has cyclic boundary conditions, the spins at the 
base of the lower cube must be the same as those at the top of the upper, as in figure 
8. Labelling the spins as in figure 8, the Boltzmann weight of the pillar is 

W,, = W(ala’bcldc’b’ld’) W(a’lab‘c’ld’cbld), (3.1) 
where W is the single-cube weight function defined in table 1 of Baxter (1983). 

Figure 8. A pillar of two cubes in the two-layer lattice. 

The function W, is given in table 2. We see that it depends on the eight spins 
a, b, . . . , h only via the four products aba’d’, abc’d‘, acb’d’ and 

p = adb’c’. (3.2) 

(3.3) 

We now set 

a‘ = aa” b’ = bb”, c’ = CC” d’  = dd“ 
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Table 2. Values of the pillar weight functions Wp: p is defined by (3.2).  

aba'd' abc'd' acb'd' WP 

so that a", b", c", d" are the products of the spin pairs on the vertical edge (e.g. 
a"= aa'). Then W, is a function only of a"d", tc"d", rb"c" where 

t = abcd. (3.4) 

For the moment, regard as fixed all the vertical spin-pair products (such as a", b", 
c", d " )  throughout the lattice. We still want to sum over the spins in the top layer, 
such as a, b, c, d. This gives us a two-dimensional 'interactions-round-a-face' model, 
but a very simple one: the four spins a, b, c, d round a typical face interact only via 
their product abcd. 

This makes it easy to sum over the top spins. We look down from above on the 
top layer and label the rows by i = 1,.  . . , m and the columns by j = 1 , .  . . , n. (Thus 
2 has N = 2nm sites.) We suppose the spin a in figure 8 is in position (i, j )  and define 

t,J = abcd, (3 .5)  

so that t,J is the four-spin product for the face. We do this for all faces. 
We can eliminate the site-spins a, b, c, d, . . . in favour of the face spins ty  Strictly, 

we should note that there are 2"+"-' a-spin configurations to each t-spin configuration 
(negating all a-spins in a row or column leaves the t-spins unchanged). Also, the 
t-spins should satisfy the restrictions that tIl r12  . . . t,, and t l J t 2 J .  . . tmJ be unity for all i ,  
j .  However, these are boundary effects and should not affect the partition function 
per site when m and n are large, so we shall simply replace the a-spin summation by 
one over the t-spins. 

The spin t ,  enters only the weight W, of the pillar (i, j ) ,  so for each pillar we can 
sum immediately over the t-spin and obtain a combined Boltzmann weight. This will 
depend on the four spin pairs a", b", c", d" round the pillar, so can be written as 

Wc( a", b", c", d " )  = 1 W,, (3.6) 
I 

where W, is given as a function of a", b", c", d" ,  t by table 2 and (3.2)-(3.4). 
It is also true that W, is unchanged by negating a", b", c", d", i.e. 

Wc(-a",  -b", -c", - d " )  = Wc(a", b", c", d " ) .  (3 .7)  

I f  we now regard a", . . . , d" as associated with the sites of a square lattice, then it 
follows that we have a square-lattice eight-vertex model in a field (Baxter 1982, 
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pp 202-8), with weights 

w1 = WC(+, +, +, +), 

“ 7 =  WC(+, +, +, -), 

w2 = WJ+, -9 -, +), 

w* = Wc(-, +, +, +). 

w3 = WC(+, - 3  +, -), 
U 4  = WJ+, +, - 9  -), U5 = WC(+, - 9  +, +I,  w6 = wc(+, +, - 9  +), (3.8) 

Evaluating these weights from table 2 and (3.2)-(3.8), we obtain 

w l = ( P o - Q o ) 2 + ( P l - Q l ) 2 ,  02 = (PI + QI)’ + (Po+ Qo)’, 

w 3  = -( p3 - Q3)2 + ( p2 + Q2I29 

w5 = w6 = 2RZR3, 

U4 = -( p 2  - 9 2 ) ’  + ( p3  + Q3) 2, ( 3 *9) 

w7 = wg = 2RoRI. 

For arbitrary values of the PI, Q,, RI (or even for the values given in (2.1), with U 
arbitrary), these are the weights of an eight-vertex model in a field. This model has 
not been solved, and is not in general critical. However, for the Zamolodchikov model 
the parameters Pi, Q,, R, are given by (3.11)-(3.13) of Baxter (1983). They satisfy the 
relations 

PIQ, = PoQo, i =  1,2,3 (3.10) 
3 

P;+Q;= (P?+Qf)  
i =  I 

(3.11) 

R;R: + R: R: = ( P :  + Q: + P: + Q:)( P: + Q: + P: + Q:). (3.12) 

(In particular, these relations are satisfied for the isotropic case, when Pi, Qi, Ri are 
given by (2.1) and (2.2).) 

Using these relations, it follows from (3.9) that 

w I w 2 +  w304=w5wg+w7wg. (3.13) 

This is precisely the condition for the model to become the free-fermion model, which 
is exactly solvable (Fan and Wu 1970). Further, the weights also satisfy the restriction 

(3.14) 

which is the condition for the model to be critical (equation (34) of Fan and Wu 1970). 
Thus the two-layer Zamolodchikov model is equivalent to the critical planar 

free-fermion model. It may well be that the Zamolodchikov model is critical for any 
(even) finite number of layers. This would fit with previous two-dimensional exact 
solutions: in these the star-triangle relations usually lead to a parametrisation of the 
weights in terms of elliptic functions, and the model becomes critical when these elliptic 
functions reduce to trigonometric ones. We can regard any finite-height Zamolodchikov 
model as two-dimensional (with a ‘pillar’ of spins per site): the tetrahedron relations 
then guarantee that the star-triangle relations of this two-dimensional model are 
satisfied. They involve trigonometric rather than elliptic functions, as in the critical 
two-dimensional models. 

We can evaluate the partition function of the isotropic two-layer Zamolodchikov 
model (with Pi, Qi, Ri given by (2.1) and (2.2)), using equations (16) and (17) of Fan 
and Wu (1970). This gives for the partition function per site of 2 (the two-layer lattice) 

~ = 2 ( 2 ~ ’ ~ - l ) e ~ ~ ’ ~ =  1.484 . . .  (3.15) 
where G = 0.915 965 . . . is Catalan’s constant. Curiously this differs from the three- 
dimensional value (2.44) only by a factor of 21’4. 

w 2 =  0 1  + ~j + ~ 4 ,  
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The three-dimensional Zamolodchikov model permits a solution of the tetrahedron 
relations just as various two-dimensional models (e.g. the Ising, eight-vertex, hard 
hexagon and critical Potts models; see Baxter 1982) permit solutions of the correspond- 
ing star-triangle relations. From experience with the two-dimensional cases, we suspect 
that if such a model only permits a solution at a special temperature, and if the solution 
involves trigonometric (rather than elliptic) functions, then the model is critical (or 
perhaps at a first-order transition, as in the two-dimensional Potts model for q > 4). 

This suggests that the Zamolodchikov model is critical. This conclusion is consistent 
with the numerical calculations described in 0 2, and with the two-layer case examined 
in 0 3. 

References 

Baxter R J 1982 Exactly Soloed Models in Statistical Mechanics (London: Academic) 
- 1983 Commun. Math. Phys. 88 185-205 
- 1984 Phys. Reo. Lert. 53 1795-8 
Baxter R J and Forrester P J 1984 J. Phys. A: Math. Gen 17 2675-85 
Fan C and Wu F Y 1970 Phys. Reo. B 2 723-33 
Guttmann A J 1984 Private communication. 
Zamolodchikov A B 1981 Commun. Math. Phys. 79 489-505 


